1. Linear Equations

1.1. Fields

We assume that the reader is familiar with the elementary algebra of
real and complex numbers. For a large portion of this book the algebraic
properties of numbers which we shall use are easily deduced from the
following brief list of properties of addition and multiplication. We let F
denote either the set of real numbers or the set of complex numbers.

1. Addition is commutative,

Tt+y=y—+=z
for all z and y in F.
2. Addition is associative,

t+W+e)=@+y) +=

forallz, y, and z in F.

3. There is a unique element O (zero) in ¥ such that z 4 0 = z, for
every xz in F.

4. To each z in F there corresponds a unique element (—z) in F such
that z + (—z) = 0.

5. Multiplication is commutative,

Ty = yx
forall z and y in F.
6. Multiplication is associative,

z(yz) = (wy)z
for all z, y, and z in F.
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7. There is a unique non-zero element 1 (one) in F such that z1 = =,
for every x in F.

8. To each non-zero z in F there corresponds a unique element x~!
(or 1/z) in F such that zz—! = 1.

9. Multiplication distributes over addition; that is, z(y +2) =
2y + a2, for all z, y, and z in F.

Suppose one has a set I' of objects z, y, 2, . . . and two operations on
the elements of F as follows. The first operation, called addition, asso-
ciates with each pair of elements z, ¥ in F an element (x + y) in F; the
second operation, called multiplication, associates with each pair z, y an
element ry in F; and these two operations satisfy conditions (1)-(9) above.
The set F, together with these two operations, is then called a field.
Roughly speaking, a field is a set together with some operations on the
objects in that set which behave like ordinary addition, subtraction,
multiplication, and division of numbers in the sense that they obey the
nine rules of algebra listed above. With the usual operations of addition
and multiplication, the set C of complex numbers is a field, as is the set B
of real numbers.

For most of this book the ‘numbers’ we use may as well be the ele-
ments from any field F. To allow for this generality, we shall use the
word ‘scalar’ rather than ‘number.” Not much will be lost to the reader
if he always assumes that the field of scalars is a subfield of the field of
complex numbers. A subfield of the field C is a set F of complex numbers
which is itself a field under the usual operations of addition and multi-
plication of complex numbers. This means that 0 and 1 are in the set F,
and that if z and y are elements of F, so are (z + v), —z, zy, and 2!
(if z # 0). An example of such a subfield is the field B of real numbers;
for, if we identify the real numbers with the complex numbers (a + 7b)
for which b = 0, the 0 and 1 of the complex field are real numbers, and
if £ and y are real, so are (¢ + y), —=z, zy, and 27! (if z # 0). We shall
give other examples below. The point of our discussing subfields is essen-
tially this: If we are working with scalars from a certain subfield of C,
then the performance of the operations of addition, subtraction, multi-
plication, or division on these scalars does not take us out of the given
subfield.

ExampLE 1. The set of positive integers: 1, 2, 3, . . ., is not a sub-
field of C, for a variety of reasons. For example, 0 is not a positive integer;
for no positive integer n is —n a positive integer; for no positive integer n
except 1 is 1/n a positive integer.

ExampLE 2. The set of integers: . . ., —2, —1,0,1,2,...,isnot a
subfield of C, because for an integer n, 1/7 is not an integer unless n is 1 or
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—1. With the usual operations of addition and multiplication, the set of
integers satisfies all of the conditions (1)-(9) except condition (8).

ExampLe 3. The set of rational numbers, that is, numbers of the
form p/q, where p and ¢ are integers and ¢ < 0, is a subfield of the field
of complex numbers. The division which is not possible within the set of
integers is possible within the set of rational numbers. The interested
reader should verify that any subfield of C' must contain every rational
number.

ExampLE 4. The set of all complex numbers of the form = + yﬁ,
where z and y are rational, is a subfield of C. We leave it to the reader to
verify this.

In the examples and exercises of this book, the reader should assume
that the field involved is a subfield of the complex numbers, unless it is
expressly stated that the field is more general. We do not want to dwell
on this point; however, we should indicate why we adopt such a conven-
tion. If F' is a field, it may be possible to add the unit 1 to itself a finite
number of times and obtain 0 (see Exercise 5 following Section 1.2):

141+ +1=0.

That does not happen in the complex number field (or in any subfield
thereof). If it does happen in F, then the least n such that the sum of n
1’s is 0 is called the characteristic of the ficld F. If it does not happen
in F, then (for some strange reason) F is called a field of characteristic
zero. Often, when we assume F is a subfield of C, what we want to guaran-
tee is that F is a field of characteristic zero; but, in a first exposure to
linear algebra, it is usually better not to worry too much about charac-
teristics of fields.

1.2. Systems of Linear Equations

Suppose F is a field. We consider the problem of finding »n scalars
(elements of F) z, . . ., z, which satisfy the conditions

Anz + Apze+ - + Aiaa =0
(1"1) Az:uxl + A?ﬂz + -+ AZ:nxn = .7/:2
Amlxl + Am2x2 + e + Amnxn = Ym

where y;,...,yn and 44 1 <7<m, 1 £j < n, are given elements
of F. We call (1-1) a system of m linear equations in n unknowns.
Any n-tuple (zi,...,2x,) of elements of ¥ which satisfies each of the
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equations in (1-1) is called a solution of the system. If y; = ¢, = --- =
Ym = 0, we say that the system is homogeneous, or that each of the
equations is homogeneous.

Perhaps the most fundamental technique for finding the solutions
of a system of linear equations is the technique of elimination. We can
illustrate this technique on the homogeneous system

200 — 22+ 23 =0
1 + 3xe + 4z3 = 0.

If we add (—2) times the second equation to the first equation, we obtain

—7$2 — 7(1?3 =0
or, o = —x;. If we add 3 times the first equation to the second equation,
we obtain

75[1 + 7x3 =0
or, ;1 = —x3. So we conclude that if (z1, z3, z3) is a solution then 2; = 2, =

—a3. Conversely, one can readily verify that any such triple is a solution.
Thus the set of solutions consists of all triples (—a, —a, a).

We found the solutions to this system of equations by ‘eliminating
unknowns,” that is, by multiplying equations by scalars and then adding
to produce equations in which some of the z; were not present. We wish
to formalize this process slightly so that we may understand why it works,
and so that we may carry out the computations necessary to solve a
system in an organized manner.

For the general system (1-1), suppose we select m scalars ¢y, . . ., Cm,
multiply the jth equation by ¢; and then add. We obtain the equation

(ClAu + -+ CmAml)xl + -+ (clAln + -+ CmAmn>xn
=ayt+ -+ ColYm.

Such an equation we shall call 4 linear combination of the equations in
(1-1). Evidently, any solution of the entire system of equations (1-1) will
also be a solution of this new equation. This is the fundamental idea of
the elimination process. If we have another system of linear equations

Buzi + -+ 4 Binn = &1
(1-2) : : :
Buzi + -+ + + BinZn = 2
in which each of the k equations is a linear combination of the equations
in (1-1), then every solution of (1-1) is a solution of this new system. Of
course it may happen that some solutions of (1-2) are not solutions of
(1-1). This clearly does not happen if each equation in the original system
is a linear combination of the equations in the new system. Let us say
that two systems of linear equations are equivalent if each equation
in each system is a linear combination of the equations in the other system.
We can then formally state our observations as follows.
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Theorem 1. Equivalent systems of linear equalions have exactly the
same solutions.

If the elimination process is to be effective in finding the solutions of
a system like (1-1), then one must see how, by forming linear combina-
tions of the given equations, to produce an equivalent system of equations
which is easier to solve. In the next section we shall discuss one method
of doing this.

Exercises

1. Verify that the set of complex numbers described in Example 4 is a sub-
field of C.

2. Let F" be the field of complex numbers. Are the following two systems of linear
equations equivalent? If so, express each equation in each system as a linear
combination of the equations in the other system.

xl-—x2=0 32?1"‘2:2:0
2214—2?2:0 I1+I2=0

3. Test the following systems of equations as in Exercise 2.

—1,‘1"‘ I2+423=0 1 — I3=0
x1+3x2—|—8x3=0 x2+31?3=0
it et fm =0

4. Test the following systems as in Exercise 2.
22+ (=1 + Dz + z=0 <1+%)x1—|—812—ix3— zs=0

3z, — 23+ Say= 0 Ity — izt 23+ T24=0

5. Let F be a set which contains exactly two elements, 0 and 1. Define an addition
and multiplication by the tables:

+/0 1 - 10 1
0(0 1 0{0 0
1710 110 1

Verify that the set F, together with these two operations, is a field.

6. Prove that if two homogeneous systems of linear equations in two unknowns
have the same solutions, then they are equivalent.

7. Prove that each subfield of the field of complex numbers contains every
rational number.

8. Prove that each field of characteristic zero contains a copy of the rational
number field.
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1.3. Matrices and Elementary
Row Operations

One cannot fail to notice that in forming linear combinations of
linear equations there is no need to continue writing the ‘unknowns’

T, . .., T, since one actually computes only with the coefficients 4 ;; and
the scalars ;. We shall now abbreviate the system (1-1) by
AX =Y
where
[An -+ Asn
4= : :
| At -+ An
1 T n
X=]": and Y =] :
Tn_| Ym,

We call A the matrix of coefficients of the system. Strictly speaking,
the rectangular array displayed above is not a matrix, but is a repre-
sentation of a matrix. An m X n matrix over the field F is a function
4 from the set of pairs of integers (7,7), 1 <1< m, 1 <j < n, into the
field F. The entries of the matrix A are the scalars A(7,j) = A, and
quite often it is most convenient to describe the matrix by displaying its
entries in a rectangular array having m vows and n columns, as above.
Thus X (above) is, or defines, an n X 1 matrix and ¥ is an m X 1 matrix.
For the time being, AX = Y is nothing more than a shorthand notation
for our system of linear equations. Later, when we have defined a multi-
plication for matrices, it will mean that ¥ is the product of 4 and X.

We wish now to consider operations on the rows of the matrix 4
which correspond to forming linear combinations of the equations in
the system AX = Y. We restrict our attention to three elementary row
operations on an m X n matrix A over the field F':

1. multiplication of one row of 4 by a non-zero scalar c;

2. replacement of the rth row of 4 by row r plus ¢ times row s, ¢ any
scalar and r # s;

3. interchange of two rows of 4.

An elementary row operation is thus a special type of function (rule) e
which associated with each m X n matrix 4 an m X n matrix e(4). One
can precisely describe e in the three cases as follows:

1. e(A)n;j = Aij 1f 7 #*~ T, G(A)rj = CA,.j.

2. G(A),] = Aij if 75 T, G(A)rj = A.,-j -+ CAgj-

3. e(4);; = Ay;; if 1 is different from both r and s, e(4),; = 4,
e(A)gj = A,.j.
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In defining e(A4), it is not really important how many columns A has, but
the number of rows of A is crucial. For example, one must worry a little
to decide what is meant by interchanging rows 5 and 6 of a 5 X 5 matrix.
To avoid any such complications, we shall agree that an elementary row
operation e is defined on the class of all m X n matrices over F, for some
fixed m but any n. In other words, a particular e is defined on the class of
all m-rowed matrices over F.

One reason that we restrict ourselves to these three simple types of
row operations is that, having performed such an operation e on a matrix
A, we can recapture A by performing a similar operation on e(A).

Theorem 2. To each elementary row operation e there corresponds an
elementary row operation ey, of the same type as e, such that e(e(A)) =
e(er(A)) = A for each A. In other words, the inverse operation (function) of
an elementary row operation exists and is an elementary row operation of the
same type.

Proof. (1) Suppose e is the operation which multiplies the rth row
of a matrix by the non-zero scalar c. Let e; be the operation which multi-
plies row 7 by ¢~ (2) Suppose e is the operation which replaces row r by
row r plus ¢ times row s, r # s. Let e; be the operation which replaces row r
by row r plus (—c¢) times row s. (3) If ¢ interchanges rows r and s, let ¢; = e.
In each of these three cases we clearly have e (e(4)) = e(ei(4)) = A for
each A. |

Definition. If A and B are m X n matrices over the field ¥, we say that
B is row-equivalent to A «f B can be obtained from A by a finite sequence
of elementary row operations.

Using Theorem 2, the reader should find it easy to verify the following.
Each matrix is row-equivalent to itself; if B is row-equivalent to A, then A
is row-equivalent to B; if B is row-equivalent to 4 and C' is row-equivalent
to B, then C is row-equivalent to A. In other words, row-equivalence is
an equivalence relation (see Appendix).

Theorem 3. If A and B are row-equivalent m X n malrices, the homo-
geneous systems of linear equations AX = 0 and BX = 0 have exactly the
same solutions.

Proof. Suppose we pass from A to B by a finite sequence of
elementary row operations:

A=Ay A;> - >4, = B.

It is enough to prove that the systems 4;X = 0 and 4;4X = 0 have the
same solutions, i.e., that one elementary row operation does not disturb
the set of solutions.
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So suppose that B is obtained from 4 by a single elementary row
operation. No matter which of the three types the operation is, (1), (2),
or (3), each equation in the system BX = 0 will be a linear combination
of the equations in the system AX = 0. Since the inverse of an elementary
row operation is an elementary row operation, each equation in AX = 0
will also be a linear combination of the equations in BX = 0. Hence these
two systems are equivalent, and by Theorem 1 they have the same
solutions. |

ExamprLE 5. Suppose F is the field of rational numbers, and
2 -1 3 2
A4 =1 4 0 —1}
2 6 —1 5
We shall perform a finite sequence of elementary row operations on 4,
indicating by numbers in parentheses the type of operation performed.

2 -1 3 2] [0 —9 3 4]
1 4 0 —-1|{2l1 4 0o -1|2
2 6 -1 5] |2 6 -1 5]
[0 -9 3 4] 0 —9 3 4]
1 4 0 -1t 4 o —-1|2
0 —2 -1 7] 0 1 ¢ -z
0 -9 3 4] [0 0 1 s3]
1 0 -2 13211 o -2 13|9%
[ 0 1 3 —%] | 0 1 7 —3
0 0 1-%} [0 o 1 —%
1 o0 -2 13|%]1 o o p{®
o 1§ -3 o 1 i -

0 0 1 —i

1 00

010 —3

The row-equivalence of A with the final matrix in the above sequence
tells us in particular that the solutions of

22y — 2+ 323+ 22, =0

l‘1+4l‘2 —.’L‘4=O
2$1+6$2'— $3+5$4=0

and
L3 — -1-3-1‘174 = O
7 + Llry = 0
Xy o %1'4 =0

are exactly the same. In the second system it is apparent that if we assign
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any rational value ¢ to x4 we obtain a solution (—%f¢, §, 4&¢, ¢), and also
that every solution is of this form.

ExaMmpLE 6. Suppose F' is the field of complex numbers and

-1
A=|—i 3}
12

In performing row operations it is often convenient to combine several
operations of type (2). With this in mind

-1 = 0 247 0 1 01
—i 31210 3+2{ 20 3+2{ 20 0}
1 2 1 2 1 2 1 0
Thus the system of equations
—$1+’[$2=0
~ixy + 32 =0
x1+2x2=0

has only the trivial solution z; = z, = 0.

In Examples 5 and 6 we were obviously not performing row opera-
tions at random. Our choice of row operations was motivated by a desire
to simplify the coefficient matrix in a manner analogous to ‘eliminating
unknowns’ in the system of linear equations. Let us now make a formal
definition of the type of matrix at which we were attempting to arrive.

Definition. An m X n matriz R 1s called row-reduced if:

(a) the first non-zero eniry in each non-zero row of R s equal fo 1;
(b) each column of R which contains the leading non-zero entry of some
row has all its other entries 0.

ExampLE 7. One example of a row-reduced matrix is the n X n
(square) identity matrix I. This is the n X n matrix defined by
1, if ¢=3
Ly = 8 = {0, ey
This is the first of many occasions on which we shall use the Kronecker
delta (5).

In Examples 5 and 6, the final matrices in the sequences exhibited
there are row-reduced matrices. Two examples of matrices which are not
row-reduced are:

10 00 0 2 1
01 -1 0} 1 0 =3}
0 0 10 0 0 0
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The second matrix fails to satisfy condition (a), because the leading non-
zero entry of the first row is not 1. The first matrix does satisfy condition
(a), but fails to satisfy condition (b) in column 3.

We shall now prove that we can pass from any given matrix to a row-
reduced matrix, by means of a finite number of elementary row oper-
tions. In combination with Theorem 3, this will provide us with an effec-
tive tool for solving systems of linear equations.

Theorem 4. Every m X n malriz over the field ¥ is row-equivalent to
a row-reduced matrix.

Proof. Let 4 be an m X n matrix over F. If every entry in the
first row of 4 is 0, then condition (a) is satisfied in so far as row 1 is con-
cerned. If row 1 has a non-zero entry, let k be the smallest positive integer
7 for which 4,; # 0. Multiply row 1 by A:', and then condition (a) is
satisfied with regard to row 1. Now for each 7 > 2, add (—A4 ;) times row
1 to row 7. Now the leading non-zero entry of row 1 occurs in column £,
that entry is 1, and every other entry in column k is 0.

Now consider the matrix which has resulted from above. If every
entry in row 2 is 0, we do nothing to row 2. If some entry in row 2 is dif-
ferent from 0, we multiply row 2 by a scalar so that the leading non-zero
entry is 1. In the event that row 1 had a leading non-zero entry in column
k, this leading non-zero entry of row 2 cannot occur in column k; say it
occeurs in column k, # k. By adding suitable multiples of row 2 to the
various rows, we can arrange that all entries in column k' are 0, except
the 1 in row 2. The important thing to notice is this: In carrying out these
last operations, we will not change the entries of row 1 in columns 1, . . ., k;
nor will we change any entry of column k. Of course, if row 1 was iden-
tically 0, the operations with row 2 will not affect row 1.

Working with one row at a time in the above manner, it is clear that
in a finite number of steps we will arrive at a row-reduced matrix. ||

Exercises

1. Find all solutions to the system of equations

(1 - 1)121 — 122 =0
21?1 + (1 = 1:)11?2 = 0.

3 -1 2
4=12 11
1 -3 0

find all solutions of AX = 0 by row-reducing 4.
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6 —4 0
A= 4 -2 0
-1 0 3
find all solutions of AX = 2X and all solutions of AX = 3X. (The symbol ¢X

denotes the matrix each entry of which is ¢ times the corresponding entry of X.)

4. Find a row-reduced matrix which is row-equivalent to

i =1+ 0
A4=]1 -2 L
1 2 -1

5. Prove that the following two matrices are not row-equivalent:

2 00 1 1 2
a —1 0} -2 0 -11
b c 3 1 3 5
a b
4= I:c d:l

be a 2 X 2 matrix with complex entries. Suppose that A4 is row-reduced and also
that @ + b 4 ¢ + d = 0. Prove that there are exactly three such matrices.

6. Let

7. Prove that the interchange of two rows of a matrix can be accomplished by a
finite sequence of elementary row operations of the other two types.

8. Consider the system of equations AX = 0 where

a b
a=[¢ ]
is & 2 X 2 matrix over the field F. Prove the following.
(a) If every entry of A is 0, then every pair (21, 2) is a solution of AX = 0.
(b) If ad — bc # 0, the system AX = 0 has only the trivial solution z; =
Lo = 0.
(c) If ad — bc = 0 and some entry of A is different from 0, then there is a

solution (9, z3) such that (z;, x;) is a solution if and only if there is a scalar ¥
such that z;, = y2?, . = yzl.

11

1.4. Row-Reduced Echelon Matrices

Until now, our work with systems of linear equations was motivated
by an attempt to find the solutions of such a system. In Section 1.3 we
established a standardized technique for finding these solutions. We wish
now to acquire some information which is slightly more theoretical, and
for that purpose it is convenient to go a little beyond row-reduced matrices.

Definition. An m X n matrix R ¢s called a row-reduced echelon
matrix f:



12

Linear Equations Chap. 1

(a) R s row-reduced;
(b) every row of R which has all its entries 0 occurs below every row
which has a non-zero entry;

(¢) ¢f rows 1,. .., r are the non-zero rows of R, and if the leading non-
zero entry of row 1 occurs wn column ki, 1= 1,...,r, then ki <
ky < -+ <k,

One can also describe an m X n row-reduced echelon matrix B as
follows. Either every entry in R is 0, or there exists a positive integer r,
1 <7 < m, and r positive integers k;, . . ., k, with 1 < k; < n and

(a) Rij=0fori>r, and B;; =0if 7 < k.
(b) Bty = 65,1 <7<, 1 <7<
© h<- - <k.

ExampLE 8. Two examples of row-reduced echelon matrices are the
n X n identity matrix, and the m X n zero matrix 0", in which all
entries are 0. The reader should have no difficulty in making other ex-
amples, but we should like to give one non-trivial one:

01 —3 0 3
00 01 2}
00 000

Theorem 5. Every m X n malrix A is row-equivalent to a row-reduced
echelon matriz.

Proof. We know that A is row-equivalent to a row-reduced
matrix. All that we need observe is that by performing a finite number of
row interchanges on a row-reduced matrix we can bring it to row-reduced
echelon form. |1

In Examples 5 and 6, we saw the significance of row-reduced matrices
in solving homogeneous systems of linear equations. Let us now discuss
briefly the system RX = 0, when R is a row-reduced echelon matrix. Let
rows 1,...,r be the non-zero rows of R, and suppose that the leading
non-zero entry of row ¢ occurs in column %, The system EX = 0 then
consists of 7 non-trivial equations. Also the unknown xj, will occur (with
non-zero coeflicient) only in the ¢th equation. If we let w, . . . , u._, denote
the (n — r) unknowns which are different from x, ..., 2, then the
r non-trivial equations in RX = 0 are of the form

Tn + "i’ Ciju; =0
Jj=1

(1-3) :

o+ 2 Chuj = 0.
i=1
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All the solutions to the system of equations RX = 0 are obtained by
assigning any values whatsoever to ui, . . ., ., and then computing the
corresponding values of zy, . .., o from (1-3). For example, if R is the
matrix displayed in Example 8, then r = 2, &y = 2, k, = 4, and the two
non-trivial equations in the system RX = 0 are

g — 313 +3r5=0 or xz=3x; — 35
s+ 22 =0 or a3 = —2x;.

So we may assign any values to z;, 23, and x5, say 11 = @, 3 = b, 25 = ¢,
and obtain the solution (a, 3b — 3¢, b, —2¢, ¢).

Let us observe one thing more in connection with the system of
equations RX = 0. If the number r of non-zero rows in R is less than n,
then the system RX = 0 has a non-trivial solution, that is, a solution
(21, ..., Z,) In which not every z; is 0. For, since r < n, we can choose
some x; which is not among the r unknowns xzy,, . . ., xx,, and we can then
construct a solution as above in which this z; is 1. This observation leads
us to one of the most fundamental facts concerning systems of homoge-
neous linear equations.

Theorem 6. If A is an m X n matriz and m < n, then the homo-
geneous system of linear equations AX = 0 has a non-trivial solution.

Proof. Let B be a row-reduced echelon matrix which is row-
equivalent to A. Then the systems AX = 0 and RX = 0 have the same
solutions by Theorem 3. If 7 is the number of non-zero rows in R, then
certainly 7 < m, and since m < n, we have r < n. It follows immediately
from our remarks above that AX = 0 has a non-trivial solution. |

Theorem 7. If A is ann X n (square) matriz, then A is row-equivalent
to the n X n identity matrix of and only if the system of equations AX =0
has only the trivial solution.

Proof. If A is row-equivalent to I, then AX =0 and IX =0
have the same solutions. Conversely, suppose AX = 0 has only the trivial
solution X = 0. Let K be an n X n row-reduced echelon matrix which is
row-equivalent to 4, and let 7 be the number of non-zero rows of k. Then
RX = 0 has no non-trivial solution. Thus r > n. But since R has n rows,
certainly r < n, and we have r = n. Since this means that R actually has
a leading non-zero entry of 1 in each of its n rows, and since these 1’s
occur each in g different one of the n columns, R must be the n X n identity
matrix. ||

Let us now ask what elementary row operations do toward solving
a system of linear equations AX = Y which is not homogeneous. At the
outset, one must observe one basic difference between this and the homo-
geneous case, namely, that while the homogeneous system always has the

13
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trivial solution z; = -+ = z, = 0, an inhomogeneous system need have
no solution at all.
We form the augmented matrix A’ of the system AX = Y. This
is the m X (n + 1) matrix whose first n columns are the columns of 4
and whose last column is Y. More precisely,
A;j = A,‘j, if ] S n
A:(n+1) = Y.

Suppose we perform a sequence of elementary row operations on A,
arriving at a row-reduced echelon matrix R. If we perform this same
sequence of row operations on the augmented matrix 4’, we will arrive
at a matrix R’ whose first » columns are the columns of B and whose last
column contains certain scalars z, . . ., z». The scalars z; are the entries
of the m X 1 matrix

which results from applying the sequence of row operations to the matrix
Y. It should be clear to the reader that, just as in the proof of Theorem 3,
the systems AX = Y and RX = Z are equivalent and hence have the
same solutions. It is very easy to determine whether the system RX = Z
has any solutions and to determine all the solutions if any exist. For, if B
has r non-zero rows, with the leading non-zero entry of row ¢ occurring

in column k;, 2 = 1,..., r, then the first 7 cquations of RX = Z effec-
tively express xy, ...,z in terms of the (n — r) remaining z; and the
scalars z, . . ., z. The last (m — r) equations are

0 = zr+l

0=z,

and accordingly the condition for the system to have a solution is z; = 0
for # > r. If this condition is satisfied, all solutions to the system are
found just as in the homogeneous case, by assigning arbitrary values to
(n — r) of the z,; and then computing z;, from the 7th equation.

ExaMpLE 9. Let F be the field of rational numbers and

1 -2 1
4=12 1 1
0 5 —1

and suppose that we wish to solve the system AX = Y for some 1, ¥,
and ys. Let us perform a sequence of row operations on the augmented
matrix A’ which row-reduces 4 :
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1 -2 1 n 1 -2 1 "
2 1 1y2_(2_).0 5—1 (y—2y1)_(zl
L0 -1 ys 5
12 1 1 "
0 5 —1 o 2./1) }_(-12» 1 =} (¥ — 2u) =2
LO 0 0 (ys Z/2 + 21/1) 0 (ys— y:+ 20)

3 HUR 2?/2)
0 1 -3 3 — 2p)
0 0 0 (y5s—y+2y0)
The condition that the system AX = Y have a solution is thus
20 — Y2+ ys =0

and if the given scalars y; satisfy this condition, all solutions are obtained
by assigning a value ¢ to z; and then computing

o = —%c+ i + 2p)
T = ¢+ (2 — 2y).
Let us observe one final thing about the system AX = Y. Suppose
the entries of the matrix A and the scalars 4, . .., y» happen to lie in a
subfield F; of the field F. If the system of equations AX = Y has a solu-
tion with z;, . .., x, in F, it has a solution with z;, ..., z, in F,. For,
over either field, the condition for the system to have a solution is that
certain relations hold between i, ..., y» in F1 (the relations z; = 0 for
1 > r, above). For example, if AX = Y is a system of linear equations
in which the scalars yx and A; are real numbers, and if there is a solution
in which z,.. ., 7, are complex numbers, then there is a solution with
Zi, . . ., ©, real numbers.

Exercises

1. Find all solutions to the following system of equations by row-reducing the
coefficient matrix:
%231 + 2$2 —_— 6$3 =0
—4351 —{“ 5$3 =0
—“31‘1 + 6232 = 13.’1,‘3 =0
'—-g*$1 + 21E2 - %:c;; =(

2. Find a row-reduced echelon matrix which is row-equivalent to

1 -1
4=72 2 |
1 149

What are the solutions of AX = (?

15
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3. Describe explicitly all 2 X 2 row-reduced echelon matrices.
4. Consider the system of equations

Ty — o+ 223=1
211 +213=1
Ty — 312 + 4x5 = 2.

Does this system have a solution? If so, describe explicitly all solutions.

5. Give an example of a system of two linear equations in two unknowns which
has no solution.

6. Show that the system

11—212+ x3+2x4=1
ot 22— T3+ Tg=2
21+ Txe — Bz5 — 24 =3

has no solution.
7. Find all solutions of
2131 bt 31}2 - 71?3 + 5134 + 225 = —2

21— 20— 4dr;+ 30+ 15 = —2
211 = 41‘3 + 2.’!?4 + Ty = 3
1 — by — Tz + 624 + 225 = —7.

8. Let

3 —1 2
A=]2 1 1}
1 =3 0

For which triples (¥1, 2, ¥3) does the system AX = Y have a solution?

9, Let
3 -6 2 -1
A-l-2 41 3]
0 01 1
1 -2 1 0

For which (yi, ys, ¥s, ¥s) does the system of equations AX = Y have a solution?

10. Suppose R and R’ are 2 X 3 row-reduced echelon matrices and that the
systems RX = 0and R’X = 0 have exactly the same solutions. Prove that R = R’.

1.5. Matrix Multiplication

It is apparent (or should be, at any rate) that the process of forming
linear combinations of the rows of a matrix is a fundamental one. For this
reason it is advantageous to introduce a systematic scheme for indicating
just what operations are to be performed. More specifically, suppose B

is an n X p matrix over a field F with rows gy, . . ., 8, and that from B we
construct a matrix ' with rows v,,..., v» by forming certain linear
combinations

(1-4) vi = A + AuBe + -+ + A
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The rows of C are determined by the mn scalars A;; which are themselves
the entries of an m X n matrix A. If (1-4) is expanded to

(Ca-Cyp) = 21 (AuBn---AuB,yp)
we see that the entries of C are given by
Cij = g: AirBrj-
r=1

Definition. Let A be an m X n matriz over the field F and let B be an
n X p matriz over F. The product AB s the m X p matric C whose i, ]
entry s

Cij = 3: AirBrj-

r=1

ExampLe 10. Here are some products of matrices with rational entries.

SR P N R |

Here
iwn=0B6 -1 2)=1-(G6 —-1 2)+0-015 4 8
v, = (0 7 2)=-36 —1 2)4+1-(15 4 8
0 6 1 1 0
(b) 9 12 -8 | -2 3 [0 6 1]
12 62 -3 5 413 8 -2
3 8 =2 01
Here

Y2=(9 12 -8 =-20 6 1)+33 8 —2)
v3y=(12 62 —-3)= 50 6 1)+43 8 -—2)

© [20] =[5 2L6]

-2 —4 -1
(d) [6 12]_[ 3] (2 4]
Here
o= (6 12) =32 4)
-1
() 2 4][ 3]=[101
0 1 01 —5 27 [2 3 4
(f) 0 00fl2 3 4{=(0 0 0
(0 0 0J[9 —1 3] |0 0 0
1 —5 270 1 0] [0 1 O
(g) 2 3 4(lo 0o ofl=]0 2 0
(9 —1 3]/0 0 0] [0 9 O]
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It is important to observe that the product of two matrices need not
be defined; the product is defined if and only if the number of columns in
the first matrix coincides with the number of rows in the second matrix.
Thus it is meaningless to interchange the order of the factors in (a), (b),
and (¢) above. Frequently we shall write products such as AB without
explicitly mentioning the sizes of the factors and in such cases it will be
understood that the product is defined. From (d), (e), (f), (g) we find that
even when the products AB and BA are both defined it need not be true
that AB = BA; in other words, matrix multiplication is not commutative.

ExamprE 11.

(a) If I is the m X m identity matrix and 4 is an m X n matrix,
IA = A.

(b) If I is the n X n identity matrix and 4 is an m X n matrix,
Al = A.

(¢) If O™ is the k X m zero matrix, 0*» = 0*"4. Similarly,
‘407:,;7 = Om,p.

ExampLE 12. Let A be an m X n matrix over F. Our earlier short-
hand notation, AX = Y, for systems of linear equations is consistent
with our definition of matrix products. For if

T

xX=|"

2o

with z; in F, then AX is the m X 1 matrix

0
y=|%

Ym |
such that Yi = Aﬂxl + Aigig + S g + A,-,,:z:,,.
The use of column matrices suggests a notation which is frequently

useful. If B is an n X p matrix, the columns of B are the 1 X n matrices
B, ..., B, defined by

By;
Bi=1: | 1<7<p.
B.;

The matrix B is the succession of these columns:
B =1[By,..., B
The %, j entry of the product matrix AB is formed from the ¢th row of A
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and the jth column of B. The reader should verify that the jth column of
AB is AB;:
AB = [AB,,...,AB,].

In spite of the fact that a product of matrices depends upon the
order in which the factors are written, it is independent of the way in
which they are associated, as the next theorem shows.

Theorem 8. If A, B, C are matrices over the field ¥ such that the prod-
ucts BC and A(BC) are defined, then so are the products AB, (AB)C and

A(BC) = (AB)C.
Proof. Suppose B is an n X p matrix. Since BC is defined, C is
a matrix with p rows, and BC has n rows. Because A (B() is defined we
may assume A is an m X n matrix. Thus the product AB exists and is an

m X p matrix, from which it follows that the product (AB)C exists. To
show that A(BC) = (AB)C means to show that

[4(BO)]i; = (AB)C]y
for each 7, j. By definition
[A(BC))i; = = Au(BC),;

= ? AirEBJ BaGi;
= ? ? A +BriCl;
= ? ? A 4BCh;
= ‘é (2; A Br)C;
= ? (AB).uCy;

= [(4B)CT:;. 1

When 4 is an n X n (square) matrix, the product A4 is defined.
We shall denote this matrix by A2 By Theorem 8, (A4)4A = A(4AA) or
A%A = AA? so that the product AAA is unambiguously defined. This
product we denote by A% In general, the product A4 --- 4 (k times) is
unambiguously defined, and we shall denote this product by A*,

Note that the relation A(BC) = (AB)C implies among other things
that linear combinations of linear combinations of the rows of C are again
linear combinations of the rows of C.

If B is a given matrix and C is obtained from B by means of an ele-
mentary row operation, then each row of C is a linear cormabination of the
rows of B, and hence there is a matrix 4 such that AB = C. In general
there are many such matrices 4, and among all such it is convenient and

19
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possible to choose one having a number of special properties. Before going
into this we need to introduce a class of matrices.

Definition. An m X n matriz 1s said to be an elementary matrix of
it can be obtained from the m X m identity matrixz by means of a single ele-
mentary row operation.

ExampLe 13. A 2 X 2 elementary matrix is necessarily one of the

following:
[O 1] I:l c] [1 O]
1 of 0o 1] c 1
c 0 1 0
I:O 1]; ¢ # 0, I:O c]’ c#0.

Theorem 9. Let e be an elementary row operation and let E be the
m X m elementary matrix E = e(I). Then, for every m X n mairiz A,

e(A) = EA.

Proof. The point of the proof is that the entry in the 7th row
and jth column of the product matrix E£A is obtained from the ith row of
E and the jth column of 4. The three types of elementary row operations
should be taken up separately. We shall give a detailed proof for an oper-
ation of type (ii). The other two cases are even easier to handle than this
one and will be left as exercises. Suppose r # s and e is the operation
‘replacement of row r by row r plus ¢ times row s.” Then

_ 5.;)‘, 7 #Z=r
Ey = {6,k + by, =T

Therefore,
A,‘k, 7 #Zr

(EA)H B k§1 EikAkj B ArJ' + CAsJ'; ’L =T

In other words EA = e(4). |

Corollary. Let A and B be m X n matrices over the field ¥. Then B
is row-equivalent to A if and only if B = PA, where P ¢s a product of m X m
elementary matrices.

Proof. Suppose B = PA where P = E, - -+ E;E; and the E; are
m X m elementary matrices. Then K14 is row-equivalent to A, and
E,(E.A) is row-equivalent to E1A. So E,E1A is row-equivalent to 4 ; and
continuing in this way we see that (E; - - - E1)A4 is row-equivalent to A.
Now suppose that B is row-equivalent to A. Let E1, Es, . .., E, be
the elementary matrices corresponding to some sequence of elementary
row operations which carries A into B. Then B = (E, -+ EnA. |
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Exercises

A=[f _; }] B=,:_ﬂ, C=1[1 -1].

Compute ABC and CAB.

2. Let
1 =11 2 -2
A= [2 0 1:|, B = l:l 3]-
3 01 4 4

Verify directly that A(AB) = A*%B.
3. Find two different 2 X 2 matrices A such that A2 = 0 but 4 = 0.

1. Let

4. For the matrix A of Exercise 2, find elementary matrices Fi, Fs, ..., K
such that
E, - BB A =1

1 -1
a=ls 2l a-[ 2]
1 0
Is there a matrix C such that CA = B?

6. Let A be an m X n matrix and B an n X & matrix. Show that the columns of
C = AB are linear combinations of the columns of A. If @y, . . . , a, are the columns
of A and vy, ..., are the columns of C, then

5. Let

n
vi = 2 Bia.
r=1
7. Let A and B be 2 X 2 matrices such that AB = I. Prove that BA = 1.
8. Let
_ Cu Cp
¢= [cm cn]
be a 2 X 2 matrix. We inquire when it is possible to find 2 X 2 matrices 4 and B

such that C = AB — BA. Prove that such matrices can be found if and only if
Cu "J[‘ 022 = O.

21

1.6. Invertible Matrices

Suppose P 1s an m X m matrix which is a product of elementary
matrices. For each m X n matrix 4, the matrix B = P4 is row-equivalent
to A; hence A is row-equivalent to B and there is a product @ of elemen-
tary matrices such that A = @B. In particular this is true when A is the



